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ABSTRACT

Background: Radiotherapy is the gold standard in the treatment of lung
cancer. However, the radiosensitization of cancerous cells requires further
improvement. Here, we investigated the effect of dihydroartemisinin (DHA)
on the radiosensitization of non-small cell lung cancer (NSCLC) cells. Methods:
Cell proliferation and cell cycle assays were carried out using A549 cells
exposed to DHA. The effect of DHA on the radiosensitization of cells was
investigated by clonogenic cell survival assay and apoptosis assay. Polymerase
chain reaction and western blotting were used to quantify GSK-3B level.
Results: DHA significantly inhibited cell proliferation from 24 to 96 h. Cells
treated with DHA had a significantly decrease G1 phase but significantly
increase S and G2/M phases compared with untreated and vehicle-treated
cells. The number of viable DHA-treated cell colonies was significantly lower
than that of untreated or vehicle-treated cells. The percentage of early
apoptotic and necrotic cells was significantly higher for cells exposed to DHA
and irradiation. GSK-3B expression was significantly higher in cells exposed to
DHA and irradiation than that in untreated cells, indicating that DHA may
enhances the radiosensitization of cells through the activation of GSK-3B.
Conclusions: Our results demonstrate that DHA can increase the
radiosensitivity of A549 cells, suggested its potential use to sensitize tumors
to radiation therapy in NSCLC. The expressions of GSK-3B were induced by
DHA in cells exposed to irradiation, indicating GSK-3 may paly important role
in the radiosensitization mechanism of DHA.
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INTRODUCTION

Lung cancer is one of the most common types
of cancer worldwide, with an estimated 2.1
million new diagnoses and 1.8 million deaths
each year (). Among the different types of lung
cancer, non-small cell lung cancer (NSCLC)
constitutes approximately 85% of all lung
cancers (3. Although new treatments, such as
immunotherapy and targeted therapy, have
been shown to improve the prognostic outcome,
radiotherapy remains the gold standard in the
treatment of early stage and advanced NSCLC G-
), However, improvements are needed to

enhance the radiosensitization of cancerous
cells.

Artemisinin is a sesquiterpene lactone
derived from Artemisia annua, a traditional
Chinese medicinal plant (6). Dihydroartemisinin
(DHA), an active metabolite of artemisinin, is an
antimalarial drug that has recently been shown
to exhibit potent anti-cancer effects (9. For
instance, DHA can induce A549 cell apoptosis
(10), We previously demonstrated that DHA can
inhibit the proliferation of cells, and resulted in
cell cycle arrest in NSCLC (11), Other studies have
reported that artemisinin, artesunate, and DHA
are toxic to radiation-resistant human breast
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cancer cells and drug-resistant human NSCLC
cells, particularly when the cells are pretreated
with  transferrin, which increases the
intracellular Fe2+ level (12 13), Here, we
hypothesized that DHA may improve the
radiosensitivity of A549 cells. Glycogen Synthase
Kinase-3 beta (GSK-3f), a serine/threonine
protein kinase, regulates radiosensitivity of
tumors in several types of cancers (14.15),

Thus, we hypothesized that DHA may
enhance the radiosensitization of A549 cells
through GSK-3f. In this study, we explored the
effect of DHA on the radiosensitization of A549
cells and assess the mechanism of action, aiming
to provide ample evidence for potential use of
DHA in sensitizing NSCLC to radiation therapy.

MATERIALS AND METHODS

Cell and culture

The non-small cell lung cancer cell line A549
was obtained from the Cell Bank of the
Committee on the Type Culture Collection of the
Chinese Academic of Science (CCTCC, Shanghai,
China). Cells were seeded in flasks and cultured
in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% fetal bovine serum
(FBS, Gibco), 100 U/ml penicillin, and 100 mg/
ml streptomycin in a humidified atmosphere of
5% CO2 at 37°C. Cells were exposed to radiation,
which was generated with a linear accelerator
(UNIQUE; Varian, Palo Alto, CA, USA).

Determination of the IC10 of DHA

A549 cells were seeded in 96-well plates at
5.0 * 10%4/well, incubated for 9 h, and then
exposed to different concentrations of DHA for
three days. Cells of the blank group were treated
with DMEM, and those of the control group were
treated with DMEM containing 1% dimethyl
sulfoxide (vehicle). The absorbance at
wavelength 450 mm was measured after three
days.

Cell proliferation assay

Cell proliferation was assessed with the Cell
Count Kit-8 (CCK-8 Beyotime, China), according
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to the manufacturer’s instructions. A549 cells
were seeded in 96-well plates at 5.0 © 10%/well
and incubated for four days. Cells of the blank
group were treated with DMEM, and those of the
control group were treated with DMEM contain-
ing 1% DMSO. The absorbance at wavelength
450 mm was measured from days 1 to 4.

Cell cycle assay

The cell cycle was analyzed by flow
cytometry (FCM) with propidium iodide
staining. Both attached and detached cells were
collected by trypsin digestion, centrifuged at low
speed, washed with ice-cold phosphate buffered
saline (PBS), and then fixed in ice-cold 70%
ethanol overnight. Cells were collected by a brief
centrifugation step and resuspended in PBS,
after which they were treated with RNase A,
stained with propidium iodide for 1 h at room
temperature, and analyzed by FCM.

Clonogenic cell survival assay

A549 cells were seeded in 6-well plates at
200 “ 104/well and cultured in the presence or
absence of DHA (DMEM or vehicle) for 6 h.
Thereafter, DHA-treated and untreated cells
were exposed to 2-Gy irradiation. Cells were
incubated for 14 days, fixed with ethanol, and
then stained with 0.1% crystal violet. Colonies
with more than 50 cells were counted under a
Leica DM4B microscope (Wetzlar, Germany).

Apoptosis assay

A549 cells were seeded in 6-well plates at 5 *
105/well and cultured in the presence or
absence (DMEM or vehicle) of DHA for 6 h.
Thereafter, DHA-treated and untreated cells
were exposed to 2-Gy irradiation. Cells were
harvested and washed twice with PBS. Cell
viability was assessed with the Annexin V-PE
Apoptosis Kit (BD Biosciences, Franklin Lakes,
NJ, USA), according to the manufacturer’s
instructions. The samples were immediately
analyzed by FCM.

Quantitative PT-PCR
Total RNA was reverse transcribed into cDNA

with the One-Step SYBR PrimeScript RT-PCR Kit
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I (Takara Biotechnology, Dalian, China), and
gRT-PCR was performed using SYBR Premix Ex
Taq (Takara Biotechnology) according to the
manufacturer’s instructions. The primers for
GSK-3B were 5'-ACTGTGTAGCCGTCTGCTGGAG-
3’ (forward) and 5'-
CAGGTGGAGTTGGAAGCTGATGC-3"  (reverse).
The primers for GAPDH were 5'-
ACCTGACCTGCCGTCTAGAA-3' (forward) and 5’
-TCCACCACCCTGTTGCTGTA-3" (reverse). The
results were analyzed by the 22Ct method. Each
experiment was repeated three times.

Antibodies and western blotting

The antibodies used in this study were
GSK-3p (Cell Signaling Technology, Danvers, MA,
USA) and B-ACTIN (Santa Cruz Biotechnology,
Santa Cruz, CA, USA). Proteins were extracted
from cells with RIPA buffer (Beyotime Institute
of Biotechnology, Nantong, China), separated on
a sodium dodecyl sulfate polyacrylamide gel,
and transferred to a polyvinylidene fluoride
membrane (Millipore, Billerica, MA, USA).
Antibody--antigen complexes were detected
using enhanced chemiluminescence reagents
(Advansta, Menlo Park, CA, USA). The blots were
scanned with the ChemiDoc Touch Imaging
System (Bio-Rad, Hercules, CA, USA) and
analyzed with the Image Lab Software (Bio-Rad,
Hercules, CA, USA).

Statistical analysis

All data were analyzed using SPSS 21.0
Software (SPSS Inc., Chicago, IL, USA). Statistical
data are presented as the mean * standard
deviation (SD). Comparisons of continuous
variables between two groups were performed
using Student’s t-test. Univariate analysis of
variance was used for comparisons among three
or more groups. P-values less than 0.05 were
considered statistically significant.

RESULTS
Determination of the IC10 of DHA
To determine the IC10 of DHA, A549 cells

were treated with different concentrations DHA
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for three days, as shown in table 1. The IC10 of
DHA was 23.47 uM.

Table 1. The effect of different concentrations of DHA on

A549 cells.
Concentration Inhibitory rate
1 ODyso

(umol-L™) %)
300 0.19+0.06 100.00
250 0.27+0.13 92.17
200 0.38+0.09 83.15
150 0.45+0.15 70.67
100 0.56+0.10 58.96
75 0.64+0.14 47.13
60 0.69+0.12 36.24
45 0.7240.13 23.36
30 0.78+0.15 15.87
15 0.81+0.16 9.16

DHA inhibits the proliferation of A549 cells
A549 cells were treated with 23 uM DHA for
96 h, and the effect of DHA on the proliferation
of cells was determined with the CCK-8 Kit. As
shown in figure 1, DHA significantly inhibited
cell proliferation from 24 to 96 h compared with
untreated and vehicle-treated cells (p < 0.05).

=&~ Blank group
0.6+ -~ Control group
=a~ Experimental group
4 0.4+
<
®
(=]
o 0.2
0.0 T Y T J
0 24 48 72 96

Hours

Figure 1. The influence of dihydroartemisinin on the
proliferation of A549 cells was detected. DHA significantly
inhibited A549 cell proliferationrom from the 24th hour to the
96th hour.

DHA induces cell cycle arrest in A549 cells

To examine the effect of DHA on the cell cycle,
A549 cells were treated with 23 uM of DHA for
48 h. As shown in figure 2, cells treated with
DHA had a significantly decrease G1 phase, but
significantly increase S and G2/M phases
compared with untreated and vehicle-treated
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cells (p < 0.05). These findings indicate that DHA
arrested A549 cells at the S phase and the G2/M
phase.

100% oc2/x
il :ioxm
60%

ws |

205 |

0%

Blank group Control group  Experimental group
Figure 2. Dihydroartemisinin induced cell cycle arrest in A549
cells. Cells treated with DHA showed a decrease in G1 phase
and an increase in both S phase and G2/M phase

DHA enhances the radiosensitization of A549
cells

To examine the effect of DHA on the
radiosensitization of A549 cells, both clonogenic
cell survival and apoptosis assays were
performed. As shown in figure 3A, the number
of viable DHA-treated cell colonies was

3A --

significantly lower than that of untreated or
vehicle-treated cells (p < 0.05). As shown in
figure 3B, the percentage of early apoptotic and
necrotic cells was significantly higher for cells
exposed to DHA and irradiation than that for
untreated or vehicle-treated cells (p < 0.05).
These findings indicate that DHA increased the
radiosensitivity of A549 cells.

DHA enhances the radiosensitization of A549
cells by activating GSK-38

GSK-3B expression was examined in
untreated A549 cells, cells exposed to
irradiation, and cells exposed to both DHA and
irradiation. As shown in Figure 4A, the GSK-3f
mRNA level was significantly higher in cells
exposed to both DHA and irradiation than that in
untreated cells or those exposed to
irradiation only (p < 0.05), consistent with the
results of western blotting (figure 4B). These
findings speculate DHA  enhanced the
radiosensitization of A529 cells through GSK-3f3
activation.

Figure 3. In clone formation experiment,

Experimental group dihydroartemisinin increased A549 radiation

sensitivity (magnification in 100) (3A).
Dihydroartemisinin increased the apoptosis
of A549 cells after radiotherapy (3B).
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in both mRNA level (4A) and protein level (4B) (p<0.05).
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DISCUSSION

Artemisinin and its derivatives (i.e., DHA)
have been one of the drugs subject to drug
repurposing with promising benefits in the field
of oncology. The artemisinin-type drugs have
been closely combined with various cancer
therapies, such as standard chemotherapy,
radiotherapy and photodynamic therapy (16).
Artemesinin has been tested as a radiosensitizer
in glioblastoma cells (17), and Hela cell lines (8),
and A549 lung cancer cells (19. DHA has been
studied as a radiosensitizer in glioblastoma
(20), and cervical cancer?l), and lung cancer cell
lines22), These studies have shown the
radiosensitizing effects of artemisinin and
dihydroartemesinin, with induction of apoptosis
and G2/M cell cycle arrest. The current study
has confirmed these findings in addition it has
shown S phase accumulation and growth arrest.
Such findings suggest that dihydroartemisinin
may be a potential radiotherapy sensitization in
non-small cell lung cancer.

Furthermore, to examine the underlying
radiosensitization mechanism of DHA in A549
cells, we analyzed the expression of GSK-3f3. GSK
-3, a multifunctional serine/threonine kinase,
had been initially identified as a key regulator of
insulin-dependent glycogen synthesis. GSK-3f3
interaction with various proteins; for example,
GSK-3B stabilizes or activates mouse double
minute 2 homolog (MDM2) and destabilizes or
inactivates activator protein 1 (AP-1)@3). Also,
GSK-3B is activated by various pathways,
including the PI3K/Akt and Wnt pathways (24-26),
Therefore, GSK-3 regulates a diverse array of
cellular processes including proliferation,
differentiation, motility and survival @7,
Consequently, the role of GSK3f in
tumorigenesis and cancer progression remains
controversial. It may function as a tumor
suppressor for certain types of tumors (27.28), but
promotes growth and development for some
others (29-31),

Although, previous studies have shown that
GSK-3B expression is associated with NSCLC
differentiation, and patients with GSK-3§-
negative tumors had a better prognosis (31.32); on
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the other hand, studies have also demonstrated
that GSK-3f3 inhibits autophagy (3 34, which
facilitates  the removal of  unwanted
mitochondria, thereby decreasing the
radiosensitivity of cancerous cells and protecting
them from the effects of irradiation (35). Ren | et
al. has proved that GSK-3f can enhance the
radiosensitivity of NSCLC cells, both in GSK-3f3-
high A549 cell line and in GSK-3p-low H460 cell
line 32), In our study, we found that GSK-3f3 level
was significantly higher in cells treated with
DHA than that in untreated or vehicle-treated
cells, indicating DHA induced GSK-3f3 expression
and increased the radiosensitivity of cells.

However, more studies are still needed to
explore the radiosensitization mechanism of
DHA. On the other hand, Li X et al have
investigated the cytotoxicity of artemisinin and
artesunate on A549 cell line and on human
bronchial epithelium. They demonstrated a
cytotoxic effect on both cell lines but higher in
A549 cell line (8., Qur current study only
investigates the radiosensitization on lung
cancer cell lines. Further studies are still needed
to clear the cytotoxicity of DHA on non-cancer
tissues with and without radiotherapy.

CONCLUSION

In conclusion, DHA can inhibit the
proliferation of A549 cells and arrest cell cycle.
DHA also increased the radiosensitivity of A549
cells, suggested its potential use to sensitize
tumors to radiation therapy in NSCLC. In
addition, DHA induced the expression of GSK-3[3
in cells exposed to irradiation, indicating GSK-3[3
may paly important role in the radiosensitization
mechanism of DHA.
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